Hydraulic Elevators ## The Hydraulic Advantage **Reliability:** Hydraulic elevators have been in service in Canada and around the world for many decades. They use proven, oil-based lifting technology in low to mid-rise buildings to provide a robust and reliable elevating device. **Durability:** In a normal application with regular preventive maintenance, many hydraulic elevators have a lifespan of over 20 years before requiring major upgrades. This results in less down time for riders and simpler long term planning for owners. **Affordability:** Hydraulic elevators are simple in design compared to traction elevators. This makes them cost effective when the product life cycle is considered, from initial installation to regular maintenance once a building is running. **Serviceability:** Hydraulic elevators have fewer parts than traction elevators, which makes them easier to maintain and to service. Also, there are fewer proprietary parts, so they can be serviced by other elevator contractors instead of only the OEM. # Hydraulic Passenger Elevator Configurations | | In-Ground | Dual Upright | Dual Telescopic | Dual Roped | | |-------------------|--|---|---|---|--| | Initial Cost | Low - Medium | Low - Medium | Medium | Medium - High | | | Floors Served | Up to 7 | Up to 3 | Up to 4 | Up to 7 | | | Maximum Travel | 18.2 m | 4.2 m * | 7.7 m * | 18.2 m | | | Cylinder Location | Below ground | Elevator shaft | Elevator shaft | Elevator shaft | | | Drive Type | Direct acting | Direct acting | Direct acting | 1:2 roping | | | Service Costs | Low | Low | Low | Medium | | | Advantages | Cost effective for
new constructionRobust designLow maintenance
cost | Cost effective for
new and retrofit
sites | Cost effective for
new and retrofit
sites | Cost effective for
new and retrofit
sites Higher travel
than other above
grounds | | | Disadvantages | Not suited for
bedrock / ground
water sites Requires third
party hole drilling Expensive to
replace cylinder | Limited travel
distance | More expensive
to install than
an in-ground
elevator | More expensive
to install and
maintain than an
in-ground More susceptible
to vandalism | | ^{*} Some increases are possible with deeper pits and / or increased overhead. #### **Common Features:** - · Governed by the CAN/CSA-B44 Elevator Code - Capacity: 910 2500 kg - Speed: 0.50 0.75 m/s - Safety features: Infra-red door curtain, emergency cab lighting, emergency phone ## Hydraulic Passenger Elevator Specifications | Capacity (kg) | 910 | 950 | 1160 | 1200 | 1365 | 1587 | 1587 | 1815 | 2050 | 2275 | | |--|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|--| | Orientation | Wide | Deep | Wide | Deep | Wide | Deep | Wide | Deep | Deep | Deep | | | Inside Cab Size Width (mm) Depth (mm) Height (mm) | 1726
1300
2286 | 1370
1726
2286 | 2032
1300
2286 | 1406
2032
2286 | 2032
1406
2286 | 1610
2032
2286 | 2032
1610
2286 | 1598
2364
2286 | 1598
2554
2286 | 1726
2554
2286 | | | Door Width (mm) | 914 | 914 | 1067 | 1067 | 1067 | 1067 | 1067 | 1219 | 1219 | 1372 | | | Hoistway Depth Front Door Only (mm) Front & Rear Doors (mm) | 1800
2036 | 2302
2614 | 1800
2036 | 2608
2920 | 1906
2142 | 2608
2920 | 2110
2346 | 2940
3252 | 3130
3442 | 3130
3442 | | | In-Ground
Hoistway Width (mm)
Pit Depth (mm)
Overhead (mm)* | 2264
1525
3800 | 1908
1525
3800 | 2540
1525
3800 | 1980
1525
3800 | 2540
1525
3800 | 2148
1525
3800 | 2540
1525
3800 | 2240
1525
3800 | 2240
1525
3800 | 2489
1525
3800 | | | Dual Upright
Hoistway Width (mm) | 2334 | 1978 | 2640 | 2032 | 2640 | 2252 | 2674 | 2310 | 2310 | 2540 | | | Travel < 3450 mm, Pit Depth = 1525 mm | | | | | | | | | | | | | Overhead (mm)* | 3800 | 3800 | 3800 | 3800 | 3800 | 3800 | 3800 | 3800 | 3800 | 3800 | | | Travel < 4200 mm, Pit Depth | = 1829 m | ım | | | | | | | | | | | Overhead (mm)* | 4100 | 4100 | 4100 | 4100 | 4100 | 4100 | 4100 | 4100 | 4100 | 4100 | | | Dual Telescopic
Hoistway Width (mm) | 2334 | 1978 | 2640 | 2032 | 2640 | 2252 | 2674 | 2310 | 2310 | 2540 | | | Travel < 6500 mm, Pit Depth = 1525 mm | | | | | | | | | | | | | Overhead (mm)* | 4100 | 4100 | 4100 | 4100 | 4100 | 4100 | 4100 | 4100 | 4100 | 4100 | | | Travel < 7700 mm, Pit Depth = 1829 mm | | | | | | | | | | | | | Overhead (mm)* | 4400 | 4400 | 4400 | 4400 | 4400 | 4400 | 4400 | 4400 | 4400 | 4400 | | | Dual Roped Hoistway Width (mm) Pit Depth (mm) Overhead (mm)* | 2438
1525
4200 | 2081
1525
4200 | 2743
1525
4200 | 2118
1525
4200 | 2743
1525
4200 | 2322
1525
4200 | 2743
1525
4200 | 2438
1525
4200 | 2438
1525
4200 | 2696
1525
4200 | | ^{*} Overhead is based upon 2438 mm cab height. For taller cabs, please contact Delta. #### Notes: - Other capacities and door configurations are available. See www.delta-elevator.com or call for details. - Applications with a single rear door should use a pocket at the rear door to reduce the hoistway depth required. Please call for details. - Dual upright and dual telescopic overhead requirements can be reduced in some circumstances by increasing pit depth. - Some slight increases in travel are possible with dual upright and dual telescopic designs on a case by case basis.